Study Paves Way for Better Energy Storage Devices

Study Paves Way for Better Energy Storage Devices

  • News
  • 1.3K

A group of researchers from the Indian Institute of Technology Guwahati and the Bhabha Atomic Research Centre, Mumbai has developed a new material that promises to improve the efficiency of electrodes used in supercapacitor devices.

The researchers have shown that supercapacitors based on electrodes made with the new material can be repeatedly charged and discharged over 10,000 times, with only minimal performance degradation, as compared to conventional batteries that typically wear out within 300-500 charging-discharging cycles.

The supercapacitors could also be charged in seconds to their full capacity and store as much energy as 30 Wh (Watt-hour) per kilogram of the materials. It further delivered the energy at a very fast rate. The delivery of energy is presented in terms of power density. The supercapacitors achieved the highest power density of 1.13 kW per kg of electrode material which is almost twice the power offered by current Li-ion batteries.

Speaking to India Science Wire, the scientists said the supercapacitors can be engineered to be compact enough to fit the extremely tight spaces of modern portable electronic equipment.

In Supercapacitors two electrodes (anode and cathode) are immersed in an electrolyte solution, and energy is stored by charge accumulation on the electrode surfaces. Atomic-thin nanosheets are considered the best choice for supercapacitor electrodes as they can offer a large area to store charge. However, integrating the microscopic ultra-small nanosheets into a usable macroscopic scale electrode is highly challenging.

The researchers have developed their hydrogels electrodes by a simple room-temperature process in which graphene and MXene nanosheets spontaneously assemble themselves over a metal plate within a water medium. Graphene sheets, which are made of single-atom carbon, store the charge on their surface via physical adsorption, known as electrical double layer mechanism (EDLC), while MXene sheets, made of titanium carbide, store the charge via both EDLC and a chemical reaction on its surface, known as pseudo-capacitance.

The study was led by Dr. Uday Narayan Maiti, and Prof. Subhradip Ghosh of IIT Guwahati, and Dr. N. Padma of Bhabha Atomic Research Centre (BARC), Mumbai, under a project of the Department of Atomic Energy’s Board of Research in Nuclear Science (BRNS). The scientists have published a report on their work in scientific journals “Electrochimica Acta” and “Carbon”.

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook

Rate

0 out of 5 stars(0 ratings)
Smart Microscopy Solution for Better Diagnostics

Smart Microscopy Solution for Better Diagnostics

A smart microscopy solution has been developed by researchers at Chandigarh-based Central Scientific Instruments Organization of the Council of Scientific and Industrial Research. It can acquire microscopic images or use stored microscopic images of a blood sample understudy for the quantification of Red Blood Cells and White Blood Cells.

  • News
  • 1.2K
Read more
A New Method to Study the Environment of Exoplanets

A New Method to Study the Environment of Exoplanets

A new research study has shown that the planets going around stars other than the Sun can also be studied by observing the polarization of light and studying polarisation signatures or variations in scattering intensity of light

  • News
  • 1.1K
Read more
National Technology Awards Presented

National Technology Awards Presented

President Ram Nath Kovind on Friday presented the national award for successful commercialization of indigenous technology to Hyderabad-based Bharat Biotech International Limited and Ernakulam-based Agappe Diagnostic Limited.

  • News
  • 2.3K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit