Artificial Membrane Inspired by Fish Scales May Help in Cleaning Oil Spills

Artificial Membrane Inspired by Fish Scales May Help in Cleaning Oil Spills

  • Research Stash
  • News
  • 2.1K

Fish scales have a typical structure and chemistry that makes them naturally capable of repelling oil.

Scientists are trying to exploit this property for developing novel materials that can find application in addressing oil pollution. The objective is to synthesize artificial interfaces that have oil repelling property or underwater superoleophobicity.

Dr Uttam Manna and Dibyangana Parbat

Dr Uttam Manna and Dibyangana Parbat

In this direction, a group of researchers at the Indian Institute of Technology (IIT), Guwahati, have developed a stretchable underwater superoleophobic membrane that can separate water from various forms of oil-contaminations.

The membrane can work in complex scenarios including extreme pH and temperatures, surfactant-contaminated water, river water, and seawater. It is able to separate oil repetitively from water even after 1,000 cycles of physical deformations.

The material has been designed by depositing a polymeric nano-complex on a polyurethane based stretchable fibrous substrate. The polymeric nano-complex was prepared by mixing a branched polyethylene polymer with Penta-acrylate molecules. The polymeric nano-complex coated fibrous substrate was then modified with glucamine molecules to mimic the fish-scale wettability, explained Dr Uttam Manna, leader of the research team while speaking to India Science Wire.

Dibyangana Parbat, co-researcher, said the new material could help in taking care of wastewater discharge from refineries and other oil-based industrial units and accidental oil spills. In addition, it could also have biomedical applications. For instance, it could be used as an anti-biofouling coating on substrates such as catheter balloon.

The existing general approaches for the synthesis of fish-scale mimicked interfaces are mostly based on depositions of polymeric hydrogels and metal oxides both of which are not durable in severe conditions.

“This work can find immense applications, and potentially create economic value,” commented,”Dr Thalappil Pradeep, Professor of Chemistry, from Indian Institute of Technology Madras, who was not connected with the study.

This study was financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology. The results of this study have been published in Journal of Materials Chemistry A. (India Science Wire)

By Ratneshwar Thakur

Journal Article

‘Fish-scale’-mimicked stretchable and robust oil-wettability that performs in various practically relevant physically/chemically severe scenarios

For the latest Science, Tech news and conversations, follow Research Stash on TwitterFacebook, and subscribe to our YouTube channel 

Rate

Dr Uttam Manna and Dibyangana Parbat

In this direction, a group of researchers at the Indian Institute of Technology (IIT), Guwahati, have developed a stretchable underwater superoleophobic membrane that can separate water from various forms of oil-contaminations.

The membrane can work in complex scenarios including extreme pH and temperatures, surfactant-contaminated water, river water, and seawater. It is able to separate oil repetitively from water even after 1,000 cycles of physical deformations.

The material has been designed by depositing a polymeric nano-complex on a polyurethane based stretchable fibrous substrate. The polymeric nano-complex was prepared by mixing a branched polyethylene polymer with Penta-acrylate molecules. The polymeric nano-complex coated fibrous substrate was then modified with glucamine molecules to mimic the fish-scale wettability, explained Dr Uttam Manna, leader of the research team while speaking to India Science Wire.

Dibyangana Parbat, co-researcher, said the new material could help in taking care of wastewater discharge from refineries and other oil-based industrial units and accidental oil spills. In addition, it could also have biomedical applications. For instance, it could be used as an anti-biofouling coating on substrates such as catheter balloon.

The existing general approaches for the synthesis of fish-scale mimicked interfaces are mostly based on depositions of polymeric hydrogels and metal oxides both of which are not durable in severe conditions.

“This work can find immense applications, and potentially create economic value,” commented,”Dr Thalappil Pradeep, Professor of Chemistry, from Indian Institute of Technology Madras, who was not connected with the study.

This study was financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology. The results of this study have been published in Journal of Materials Chemistry A. (India Science Wire)

By Ratneshwar Thakur

Journal Article

‘Fish-scale’-mimicked stretchable and robust oil-wettability that performs in various practically relevant physically/chemically severe scenarios

For the latest Science, Tech news and conversations, follow Research Stash on TwitterFacebook, and subscribe to our YouTube channel 

" }
Scientists Create Models to Better Predict Storm Surges

Scientists Improvise Models to Better Predict Storm Surges

Researchers at India Institute of Technology, Delhi, have come up with an improvised prediction model that promises to help make a more accurate forecast of storm surges due to the cyclone and other storms arising on the eastern flank of the country, in the Bay of Bengal.

  • News
  • 1.7K
Read more
Scientists Propose Controlled Human Infection Model Studies

Scientists Propose Controlled Human Infection Model Studies

To study how the pathogen that transmits this disease, how the disease progresses, how an individual body responds to it and how effective treatment can be formulated to encounter this disease, researchers have proposed Clinical Human Infection Model (CHIM) studies

  • News
  • 1.6K
Read more
Why Black Kites Attack Humans

Why Black Kites Attack Humans

A new study has found that the probability of attack by kites, birds of prey that inhabit urban areas, increases in neighborhoods where human population is high and conditions are unhygienic. The birds also get more aggressive when they have eggs in their nests.

  • News
  • 2.3K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit