Dr. Jitendra Kumar Thakur with his colleagues

Researchers Find A New Possibility to Improve Rice Productivity

  • Research Stash
  • News
  • 1.7K

Rice is one of the main staple foods across the world as it has high carbohydrate content and provides instant energy. In Southeast Asia, where it is consumed more than in other parts of the world, it accounts for more than 75% of the calorie intake. India has the largest area under rice crop cultivation; almost all states grow rice. However, it suffers from a problem of low productivity.

Dr. Jitendra Kumar Thakur with his colleagues
Dr. Jitendra Kumar Thakur with his colleagues

To meet the demand of the growing population of India and the world, production of rice needs to increase significantly, say by about 50% of current production. Traits like the number of grains per plant and weight of the grain mainly determine the yield in rice. Thus, one of the main aims of researchers and breeders has been to develop superior rice varieties with heavier grains, which can give higher yield and better nutrition.

In a new study, researchers from the Department of Biotechnology’s National Institute of Plant Genome Research; ICAR-Indian Agricultural Research Institute; ICAR-National Rice Research Institute, Cuttack; and University of Delhi South Campus have identified a region in the genome of a rice, which seems to have the potential for improving productivity.

The scientists conducted their study by sequencing the genomes of four Indian genotypes (LGR, PB 1121, Sonasal & Bindli) that show contrasting phenotype in seed size/weight. After analyzing their genomic variations, they found that the Indian rice germplasms had much more genomic diversity than estimated so far.

They then studied the DNA from 3000 rice accessions from across the world along with the four Indian genotypes sequenced in the study. They identified one long (~6 Mb) genomic region, which had an unusually suppressed nucleotide diversity region across the centromere of chromosome 5. They named it a `low diversity region’ or LDR in short.

An in-depth multidimensional analysis of this region revealed that it had played an important role during the domestication of rice varieties as it was present in most of the cultivated rice genotypes and absent in wild varieties. Most of the modern cultivated rice varieties belong to japonica and indica genotypes. They had this region prominently. In contrast, it was less prominent in the aus group rice varieties, which are closer to the wild type. Further studies revealed that the LDR region contained one QTL (Quantitative Trait Locus) region that was significantly associated with grain size/weight trait.

The new study assumes importance as, in addition to genome-wide exploration, it has highlighted an important and a long domestication-related genomic region, which was found to be evolutionarily crafted to carry multiple agronomic traits associations. “We believe that in future efforts, this LDR region could be utilized for improving rice production by targeting various traits including the seed size QTL identified here”, team leader, Jitendra Kumar Thakur of DBT-NIPGR said.

The study team included Swarup K. Parida, Angad Kumar, Anurag Daware, Arvind Kumar, Vinay Kumar, and Subhasish Mondal of DBT-NIPGR, Akhilesh K. Tyagi of University of Delhi South Campus, Gopala Krishnan S and Ashok. K. Singh of ICAR-IARI, and Bhaskar Chandra Patra of ICAR-NRRI. They have submitted a report on their work to The Plant Journal. It has accepted it for publication. (ISW)

Sunderarajan Padmanabhan

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook

Rate

The scientists conducted their study by sequencing the genomes of four Indian genotypes (LGR, PB 1121, Sonasal & Bindli) that show contrasting phenotype in seed size/weight. After analyzing their genomic variations, they found that the Indian rice germplasms had much more genomic diversity than estimated so far.

They then studied the DNA from 3000 rice accessions from across the world along with the four Indian genotypes sequenced in the study. They identified one long (~6 Mb) genomic region, which had an unusually suppressed nucleotide diversity region across the centromere of chromosome 5. They named it a `low diversity region’ or LDR in short.

An in-depth multidimensional analysis of this region revealed that it had played an important role during the domestication of rice varieties as it was present in most of the cultivated rice genotypes and absent in wild varieties. Most of the modern cultivated rice varieties belong to japonica and indica genotypes. They had this region prominently. In contrast, it was less prominent in the aus group rice varieties, which are closer to the wild type. Further studies revealed that the LDR region contained one QTL (Quantitative Trait Locus) region that was significantly associated with grain size/weight trait.

The new study assumes importance as, in addition to genome-wide exploration, it has highlighted an important and a long domestication-related genomic region, which was found to be evolutionarily crafted to carry multiple agronomic traits associations. “We believe that in future efforts, this LDR region could be utilized for improving rice production by targeting various traits including the seed size QTL identified here”, team leader, Jitendra Kumar Thakur of DBT-NIPGR said.

The study team included Swarup K. Parida, Angad Kumar, Anurag Daware, Arvind Kumar, Vinay Kumar, and Subhasish Mondal of DBT-NIPGR, Akhilesh K. Tyagi of University of Delhi South Campus, Gopala Krishnan S and Ashok. K. Singh of ICAR-IARI, and Bhaskar Chandra Patra of ICAR-NRRI. They have submitted a report on their work to The Plant Journal. It has accepted it for publication. (ISW)

Sunderarajan Padmanabhan

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook

" }
Time Stamping with IST Can Help Crack Cybercrimes

Time Stamping with IST Can Help Crack Cybercrimes

All digital transactions being carried out in India could soon have to timestamp with Indian Standard Time (IST). The National Physical Laboratory (NPL) – the official timekeeper of IST – has signed an agreement with the Department of Telecommunication (DoT) to establish a nationwide network for time stamping and time synchronization and to ensure traceability of time signals.

  • News
  • 1.8K
Read more
CSIR Tops Scientific Research Institutional Ranking

CSIR Tops Scientific Research Institutional Ranking

The Council of Scientific and Industrial Research has been ranked first in the Nature Ranking Index-2020. The rankings are based on total research output which the institutions have carried out from December 01, 2018, to 30th November 2019

  • News
  • 2.1K
Read more

Osteoporosis Drug May Find Use in Cancer Therapy

A team of researchers at Icahn School of Medicine at Mount Sinai in the U.S. led by Mone Zaidi, a scientist of Indian origin, has found that a group of drugs called bisphosphonates, which are used for the treatment of osteoporosis, could also be used for treating some lung, breast and colon cancers.

  • News
  • 1.3K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit