Graphene Forged Into Three-dimensional Shapes

  • News
  • 1.7K

Researchers from Finland and Taiwan have discovered how graphene, a single-atom-thin layer of carbon, can be forged into three-dimensional objects by using laser light. A striking illustration was provided when the researchers fabricated a pyramid with a height of 60 nm, which is about 200 times larger than the thickness of a graphene sheet. The pyramid was so small that it would easily fit on a single strand of hair. The research was supported by the Academy of Finland and the Ministry of Science and Technology of the Republic of China.

151643_web.jpgGraphene is a close relative to graphite, which consists of millions of layers of graphene and can be found in common pencil tips. After graphene was first isolated in 2004, researchers have learned to routinely produce and handle it. Graphene can be used to make electronic and optoelectronic devices, such as transistors, photodetectors, and sensors. In future, we will probably see an increasing number of products containing graphene.

“We call this technique optical forging since the process resembles forging metals into 3D shapes with a hammer. In our case, a laser beam is a hammer that forges graphene into 3D shapes,” explains Professor Mika Pettersson, who led the experimental team at the Nanoscience Center of the University of Jyväskylä, Finland. “The beauty of the technique is that it’s fast and easy to use; it doesn’t require any additional chemicals or processing. Despite the simplicity of the technique, we were very surprised initially when we observed that the laser beam induced such substantial changes on graphene. It took a while to understand what was happening.”

“At first, we were flabbergasted. The experimental data simply made no sense,” says Dr. Pekka Koskinen, who was responsible for the theory. “But gradually, by the close interplay between experiments and computer simulations, the actuality of 3D shapes and their formation mechanism started to become clear.”

“When we first examined the irradiated graphene, we were expecting to find traces of chemical species incorporated into the graphene, but we couldn’t find any. After some more careful inspection, we concluded that it must be purely structural defects, rather than chemical doping, that is responsible for such dramatic changes on graphene,” explains Associate Professor Wei Yen Woon from Taiwan, who led the experimental group that carried out X-ray photoelectron spectroscopy at the synchrotron facility.

The novel 3D graphene is stable and it has electronic and optical properties that differ from normal 2D graphene. Optically forged graphene can help in fabricating 3D architectures for graphene-based devices.

###

The research was carried out at the Nanoscience Center (NSC) of the University of Jyväskylä, the National Central University of Taiwan and the National Synchrotron Radiation Research Center in Taiwan.

Inquiries

Reference

Andreas Johansson, Pasi Myllyperkiö, Pekka Koskinen, Jukka Aumanen, Juha Tapio Koivistoinen, Hung-Chieh Tsai, Chia-Hao Chen, Lo-Yueh Chang, Vesa-Matti Hiltunen, Jyrki Manninen, Wei-Yen Woon, and Mika Pettersson, Optical Forging of Graphene into Three-Dimensional Shapes. Nano Lett., DOI: 10.1021/acs.nanolett.7b03530 http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03530

Photo: A pyramid made from graphene. A similar structure was made experimentally by using laser irradiation in a process called ‘optical forging’.

Rate

0 out of 5 stars(0 ratings)

ITRI’s Cytotwister Increases Stem Cell Harvest up to 10,000 Percent and Decreases Cost up to 90 Percent over Current Monolayer and 3D Structures

Ingenious Carrier Design Provides 3D-to-2D Conversion for Maximum Harvest of Clinical-grade Stem Cells for Autoimmune Diseases, Cancer Research, and Tissue Regeneration

  • News
  • 1.2K
Read more
Experts Suggest More Protected Areas in Sikkim

Experts Suggest More Protected Areas in Sikkim

Scientists from the University of Delhi have suggested the creation of three more protected areas in Sikkim, besides expansion of three existing three wildlife sanctuaries to help conserve endemic plants in the Himalayan state

  • News
  • 1.6K
Read more
The booming life science and healthcare ecosystem of Singapore

The booming life science and healthcare ecosystem of Singapore

Singapore has been a focal point for so many tech companies to provide its operations in the Asia Pacific. This city has attracted much attention in the last few decades due to its diverse workforce, linguistic diversity, smart city initiatives, and start-up friendly ecosystem.

  • News
  • 1.3K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit